Comparative Efficacies of a 3D-Printed PCL/PLGA/-TCP Membrane and a Titanium Membrane for Guided Bone Regeneration in Beagle Dogs

نویسندگان

  • Jin-Hyung Shim
  • Joo-Yun Won
  • Su-Jin Sung
  • Dong-Hyuk Lim
  • Won-Soo Yun
  • Young-Chan Jeon
  • Jung-Bo Huh
  • Jianxun Ding
چکیده

This study was conducted to evaluate the effects of a 3D-printed resorbable polycaprolactone/poly(lactic-co-glycolic acid)/β-tricalcium phosphate (PCL/PLGA/β-TCP) membrane on bone regeneration and osseointegration in areas surrounding implants and to compare results with those of a non-resorbable titanium mesh membrane. After preparation of PCL/PLGA/β-TCP membranes using extrusion-based 3D printing technology; mechanical tensile testing and in vitro cell proliferation testing were performed. Implant surgery and guided bone regeneration were performed randomly in three groups (a no membrane group, a titanium membrane group, and a PCL/PLGA/β-TCP membrane group (n = 8 per group)). Histological and histometric analyses were conducted to evaluate effects on bone regeneration and osseointegration. Using the results of mechanical testing; a PCL/PLGA/β-TCP ratio of 2:6:2 was selected. The new bone areas (%) in buccal defects around implants were highest in the PCL/PLGA/β-TCP group and significantly higher than in the control group (p < 0.05). Bone-to-implant contact ratios (%) were also significantly higher in the PCL/PLGA/β-TCP and titanium groups than in the control group (p < 0.05). When the guided bone regeneration procedure was performed using the PCL/PLGA/β-TCP membrane; new bone formation around the implant and osseointegration were not inferior to those of the non-resorbable pre-formed titanium mesh membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model.

Here, we compared 3D-printed polycaprolactone/poly(lactic-co-glycolic acid)/β-tricalcium phosphate (PCL/PLGA/β-TCP) membranes with the widely used collagen membranes for guided bone regeneration (GBR) in beagle implant models. For mechanical property comparison in dry and wet conditions and cytocompatibility determination, we analyzed the rate and pattern of cell proliferation of seeded fibrobl...

متن کامل

Comparative Efficacies of Collagen-Based 3D Printed PCL/PLGA/β-TCP Composite Block Bone Grafts and Biphasic Calcium Phosphate Bone Substitute for Bone Regeneration

The purpose of this study was to compare bone regeneration and space maintaining ability of three-dimensional (3D) printed bone grafts with conventional biphasic calcium phosphate (BCP). After mixing polycaprolactone (PCL), poly (lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) in a 4:4:2 ratio, PCL/PLGA/β-TCP particulate bone grafts were fabricated using 3D printing technolo...

متن کامل

Effects of 3D-Printed Polycaprolactone/β-Tricalcium Phosphate Membranes on Guided Bone Regeneration

This study was conducted to compare 3D-printed polycaprolactone (PCL) and polycaprolactone/β-tricalcium phosphate (PCL/β-TCP) membranes with a conventional commercial collagen membrane in terms of their abilities to facilitate guided bone regeneration (GBR). Fabricated membranes were tested for dry and wet mechanical properties. Fibroblasts and preosteoblasts were seeded into the membranes and ...

متن کامل

In Vivo Evaluation of 3D-Printed Polycaprolactone Scaffold Implantation Combined with β-TCP Powder for Alveolar Bone Augmentation in a Beagle Defect Model

Insufficient bone volume is one of the major challenges encountered by dentists after dental implant placement. This study aimed to evaluate the efficacy of a customized three-dimensional polycaprolactone (3D PCL) scaffold implant fabricated with a 3D bio-printing system to facilitate rapid alveolar bone regeneration. Saddle-type bone defects were surgically created on the healed site after ext...

متن کامل

The Mechanical Properties and Biometrical Effect of 3D Preformed Titanium Membrane for Guided Bone Regeneration on Alveolar Bone Defect

The purpose of this study is to evaluate the effect of three-dimensional preformed titanium membrane (3D-PFTM) to enhance mechanical properties and ability of bone regeneration on the peri-implant bone defect. 3D-PFTMs by new mechanically compressive molding technology and manually shaped- (MS-) PFTMs by hand manipulation were applied in artificial peri-implant bone defect model for static comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015